Collagen 1 signaling at the central nervous system injury site and astrogliosis
نویسندگان
چکیده
منابع مشابه
A Novel Rac1-GSPT1 Signaling Pathway Controls Astrogliosis Following Central Nervous System Injury.
Astrogliosis (i.e. glial scar), which is comprised primarily of proliferated astrocytes at the lesion site and migrated astrocytes from neighboring regions, is one of the key reactions in determining outcomes after CNS injury. In an effort to identify potential molecules/pathways that regulate astrogliosis, we sought to determine whether Rac/Rac-mediated signaling in astrocytes represents a nov...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملThe Role of Mammalian Target of Rapamycine Signaling Pathway in Central Nervous System Cancers: A Review
Mammalian mechanistic target of rapamycine (mTOR) is a conserved serine/threonine kinase in the cellular PI3K/Akt/mTOR signaling pathway. This pathway is modified by cellular alterations such as level of energy, growth factors, stresses, as well as the increased environmental level of cancerous cytokines. In general, increase of this kinase protein function is seen in various types of cancers, ...
متن کاملADENOSINE IN THE CENTRAL NERVOUS SYSTEM
Besides being a metabolite of nucleotides like ATP, adenosine is a mediator of neuronal function in the central nervous system. Its actions are mediated by at least three extracellular receptors. In this review different aspects of adenosine such as biosynthesis, release, inactivation and its receptors are discussed. It also covers pre- and postsynaptic effects as well as postreceptor mecha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Regeneration Research
سال: 2017
ISSN: 1673-5374
DOI: 10.4103/1673-5374.217323